Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 200
Filtrar
1.
bioRxiv ; 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38617269

RESUMO

Neutrophils accumulate early in tissue injury. However, the cellular and functional heterogeneity of neutrophils during homeostasis and in response to tissue damage remains unclear. Here, we use larval zebrafish to understand neutrophil responses to thermal injury. Single-cell transcriptional mapping of myeloid cells during a 3-day time course in burn and control larvae revealed distinct neutrophil subsets and their cell-cell interactions with macrophages across time and conditions. The trajectory formed by three zebrafish neutrophil subsets resembles human neutrophil maturation, with varying transition patterns between conditions. Through ligand-receptor cell-cell interaction analysis, we found neutrophils communicate more in burns in a pathway and temporal manner. Finally, we identified the correlation between zebrafish myeloid signatures and human burn severity, establishing GPR84+ neutrophils as a potential marker of early innate immune response in burns. This work builds the molecular foundation and a comparative single-cell genomic framework to identify neutrophil markers of tissue damage using model organisms.

2.
iScience ; 27(4): 109532, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38577110

RESUMO

Wound healing is impaired by infection; however, how microbe-induced inflammation modulates tissue repair remains unclear. We took advantage of the optical transparency of zebrafish and a genetically tractable microbe, Listeria monocytogenes, to probe the role of infection and inflammation in wound healing. Infection with bacteria engineered to activate the inflammasome, Lm-Pyro, induced persistent inflammation and impaired healing despite low bacterial burden. Inflammatory infections induced il1b expression and blocking IL-1R signaling partially rescued wound healing in the presence of persistent infection. We found a critical window of microbial clearance necessary to limit persistent inflammation and enable efficient wound repair. Taken together, our findings suggest that the dynamics of microbe-induced tissue inflammation impacts repair in complex tissue damage independent of bacterial load, with a critical early window for efficient tissue repair.

3.
J Leukoc Biol ; 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38417030

RESUMO

Neutrophils are rapidly recruited to sites of infection and are critical for pathogen clearance. Therapeutic use of primary neutrophils has been limited as they have a short lifespan and are not amenable to genetic manipulation. Human induced pluripotent stem cells (iPSCs) can provide a robust source of neutrophils for infusion and are genetically tractable. However, current work has indicated that dampened intracellular signaling limits iPSC-derived neutrophil (iNeutrophil) cellular activation and antimicrobial response. Here, we show that protein tyrosine phosphatase 1B (PTP1B) inhibits intracellular signaling and dampens iNeutrophil effector function. Deletion of the PTP1B phosphatase increased PI3K and ERK signaling and was associated with increased F-actin polymerization, cell migration and phagocytosis. In contrast, other effector functions like NETosis and ROS production were reduced. PTP1B-deficient neutrophils were more responsive to A. fumigatus and displayed rapid recruitment and control of hyphal growth. Accordingly, depletion of PTP1B increased production of inflammatory factors including the neutrophil chemokine IL-8. Taken together, these findings suggest that PTP1B limits iNeutrophil motility and antimicrobial function.

4.
J Cell Sci ; 137(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38224139

RESUMO

Neutrophil-directed motility is necessary for host defense, but its dysregulation can also cause collateral tissue damage. Actinopathies are monogenic disorders that affect the actin cytoskeleton and lead to immune dysregulation. Deficiency in ARPC1B, a component of the Arp2/3 complex, results in vascular neutrophilic inflammation; however, the mechanism remains unclear. Here, we generated human induced pluripotent stem cell (iPSC)-derived neutrophils (denoted iNeutrophils) that are deficient in ARPC1B and show impaired migration and a switch from forming pseudopodia to forming elongated filopodia. We show, using a blood vessel on a chip model, that primary human neutrophils have impaired movement across an endothelium deficient in APRC1B. We also show that the combined deficiency of ARPC1B in iNeutrophils and endothelium results in further reduction in neutrophil migration. Taken together, these results suggest that ARPC1B in endothelium is sufficient to drive neutrophil behavior. Furthermore, the findings provide support for using the iPSC system to understand human neutrophil biology and model disease in a genetically tractable system.


Assuntos
Complexo 2-3 de Proteínas Relacionadas à Actina , Células-Tronco Pluripotentes Induzidas , Neutrófilos , Humanos , Complexo 2-3 de Proteínas Relacionadas à Actina/genética , Movimento Celular , Proteínas do Citoesqueleto , Células Endoteliais , Endotélio
5.
Sci Rep ; 14(1): 2543, 2024 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-38291060

RESUMO

While the exquisite sensitivity of neutrophils enables their rapid response to infection in vivo; this same sensitivity complicates the ex vivo study of neutrophils. Handling of neutrophils ex vivo is fraught with unwanted heterogeneity and alterations that can diminish the reproducibility of assays and limit what biological conclusions can be drawn. There is a need to better understand the influence of ex vivo procedures on neutrophil behavior to guide improved protocols for ex vivo neutrophil assessment to improve inter/intra-experimental variability. Here, we investigate how whole blood logistics (i.e., the procedure taken from whole blood collection to delivery of the samples to analytical labs and storage before neutrophil interrogation) affects neutrophil non-specific activation (i.e., baseline apoptosis and NETosis) and kinetics (i.e., activation over time). All the experiments (60+ whole blood neutrophil isolations across 36 blood donors) are performed by a single operator with optimized isolation and culture conditions, and automated image analysis, which together increase rigor and consistency. Our results reveal: (i) Short-term storage (< 8 h) of whole blood does not significantly affect neutrophil kinetics in subsequent two-dimensional (2D) cell culture; (ii) Neutrophils from long-term storage (> 24 h) in whole blood show significantly higher stability (i.e., less non-specific activation) compared to the control group with the isolated cells in 2D culture. (iii) Neutrophils have greater non-specific activation and accelerated kinetic profiles when stored in whole blood beyond 48 h.


Assuntos
Ativação de Neutrófilo , Neutrófilos , Reprodutibilidade dos Testes
6.
bioRxiv ; 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37745595

RESUMO

The tumor microenvironment (TME) is characterized by a network of cancer cells, recruited immune cells and extracellular matrix (ECM) in a hypoxic microenvironment. However, the specific role of neutrophils during tumor development, and their interactions with other immune cells is still not well understood. Thus, there is a need to investigate the interaction between primary neutrophils and natural killer cells and the resulting effects on tumor development. Here we use both standard well plate culture and an under oil microfluidic (UOM) assay with an integrated extracellular cell matrix (ECM) bridge to elucidate how naive primary neutrophils respond to both patient derived tumor cells and tumor cell lines. Our data demonstrated that both patient derived head and neck squamous cell carcinoma (HNSCC) tumor cells and MDA-MB-231 breast cancer cells trigger cluster formation in neutrophils, and the swarm of neutrophils restricts tumor invasion through the generation of reactive oxygen species (ROS) and neutrophil extracellular trap (NETs) release within the neutrophil cluster. However, we also observed that the presence of neutrophils downregulates granzyme B in NK-92 cells and the resulting NETs can obstruct NK cells from penetrating the tumor mass in vitro suggesting a dual role for neutrophils in the TME. Further, using label-free optical metabolic imaging (OMI) we observed changes in the metabolic activities of primary neutrophils during the different swarming phases when challenged with tumor cells. Finally, our data demonstrates that neutrophils in direct contact, or in close proximity, with tumor cells exhibit greater metabolic activities (lower nicotinamide adenine dinucleotide phosphate (NAD(P)H) mean lifetime) compared to non-contact neutrophils.

7.
bioRxiv ; 2023 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-38106211

RESUMO

Cell migration is regulated by an interplay between both chemical and mechanical cues. Immune cells navigate through interstitial spaces and generate forces to deform surrounding cells, which in turn exert opposing pressures that regulate cell morphology and motility mechanisms. Current in vitro systems to study confined cell migration largely utilize rigid materials orders of magnitude stiffer than surrounding cells, limiting insights into how these local physical interactions regulate interstitial cell motility. Here, we first characterize mechanical interactions between neutrophils and surrounding cells in larval zebrafish and subsequently engineer in vitro migration channels bound by a deformable liquid-liquid interface that responds to cell generated pressures yielding a gradient of confinement across the length of a single cell. Tuning confining pressure gradients replicates mechanical interactions with surrounding cells during interstitial migration in vivo . We find that neutrophils favor a bleb-based mechanism of force generation to deform a barrier applying cell-scale confining forces. This work introduces a biomimetic material interface that enables new avenues of exploring the influence of mechanical forces on cell migration.

8.
bioRxiv ; 2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37808750

RESUMO

Neutrophils - the first responders in innate immunity - perform a variety of effector functions associated with specific metabolic demand. To maintain fitness and support functions, neutrophils have been found to utilize extracellular glucose, intracellular glycogen, and other alternative substrates. However, the quantitative contribution of these nutrients under specific conditions and the relative dependence of various cell functions on specific nutrients remain unclear. Here, using ex vivo and in vivo isotopic tracing, we reveal that under resting condition, human peripheral blood neutrophils, in contrast to in vitro cultured human neutrophil-like cell lines, rely on glycogen as a major direct source of glycolysis and pentose phosphate pathway. Upon activation with a diversity of stimuli, neutrophils undergo a significant and often rapid nutrient preference shift, with glucose becoming the dominant metabolic source thanks to a multi-fold increase in glucose uptake mechanistically mediated by the phosphorylation and translocation of GLUT1. At the same time, cycling between gross glycogenesis and glycogenolysis is also substantially increased, while the net flux favors sustained or increased glycogen storage. The shift in nutrient utilization impacts neutrophil functions in a function-specific manner. The activation of oxidative burst specifically depends on the utilization of extracellular glucose rather than glycogen. In contrast, the release of neutrophil traps can be flexibly supported by either glucose or glycogen. Neutrophil migration and fungal control is promoted by the shift away from glycogen utilization. Together, these results quantitatively characterize fundamental features of neutrophil metabolism and elucidate how metabolic remodeling shapes neutrophil functions upon activation.

9.
J Biomed Opt ; 28(6): 066502, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37351197

RESUMO

Significance: Fluorescence lifetime imaging microscopy (FLIM) of the metabolic co-enzyme nicotinamide adenine dinucleotide (phosphate) [NAD(P)H] is a popular method to monitor single-cell metabolism within unperturbed, living 3D systems. However, FLIM of NAD(P)H has not been performed in a light-sheet geometry, which is advantageous for rapid imaging of cells within live 3D samples. Aim: We aim to design, validate, and demonstrate a proof-of-concept light-sheet system for NAD(P)H FLIM. Approach: A single-photon avalanche diode camera was integrated into a light-sheet microscope to achieve optical sectioning and limit out-of-focus contributions for NAD(P)H FLIM of single cells. Results: An NAD(P)H light-sheet FLIM system was built and validated with fluorescence lifetime standards and with time-course imaging of metabolic perturbations in pancreas cancer cells with 10 s integration times. NAD(P)H light-sheet FLIM in vivo was demonstrated with live neutrophil imaging in a larval zebrafish tail wound also with 10 s integration times. Finally, the theoretical and practical imaging speeds for NAD(P)H FLIM were compared across laser scanning and light-sheet geometries, indicating a 30× to 6× acquisition speed advantage for the light sheet compared to the laser scanning geometry. Conclusions: FLIM of NAD(P)H is feasible in a light-sheet geometry and is attractive for 3D live cell imaging applications, such as monitoring immune cell metabolism and migration within an organism.


Assuntos
NAD , Neoplasias Pancreáticas , Animais , NAD/metabolismo , Peixe-Zebra , Microscopia de Fluorescência/métodos , Fótons , Imagem Óptica/métodos
10.
Proc Natl Acad Sci U S A ; 120(20): e2301137120, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37155881

RESUMO

Homeostatic trafficking to lymph nodes allows T cells to efficiently survey the host for cognate antigen. Nonmammalian jawed vertebrates lack lymph nodes but maintain diverse T cell pools. Here, we exploit in vivo imaging of transparent zebrafish to investigate how T cells organize and survey for antigen in an animal devoid of lymph nodes. We find that naïve-like T cells in zebrafish organize into a previously undescribed whole-body lymphoid network that supports streaming migration and coordinated trafficking through the host. This network has the cellular hallmarks of a mammalian lymph node, including naïve T cells and CCR7-ligand expressing nonhematopoietic cells, and facilitates rapid collective migration. During infection, T cells transition to a random walk that supports antigen-presenting cell interactions and subsequent activation. Our results reveal that T cells can toggle between collective migration and individual random walks to prioritize either large-scale trafficking or antigen search in situ. This lymphoid network thus facilitates whole-body T cell trafficking and antigen surveillance in the absence of a lymph node system.


Assuntos
Linfócitos T , Peixe-Zebra , Animais , Linfonodos , Células Apresentadoras de Antígenos , Antígenos , Movimento Celular , Mamíferos , Proteínas de Peixe-Zebra , Receptores CCR7
11.
PLoS Pathog ; 19(5): e1011152, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37126504

RESUMO

Hyphal growth is essential for host colonization during Aspergillus infection. The transcription factor ZfpA regulates A. fumigatus hyphal development including branching, septation, and cell wall composition. However, how ZfpA affects fungal growth and susceptibility to host immunity during infection has not been investigated. Here, we use the larval zebrafish-Aspergillus infection model and primary human neutrophils to probe how ZfpA affects A. fumigatus pathogenesis and response to antifungal drugs in vivo. ZfpA deletion promotes fungal clearance and attenuates virulence in wild-type hosts and this virulence defect is abrogated in neutrophil-deficient zebrafish. ZfpA deletion also increases susceptibility to human neutrophils ex vivo while overexpression impairs fungal killing. Overexpression of ZfpA confers protection against the antifungal caspofungin by increasing chitin synthesis during hyphal development, while ZfpA deletion reduces cell wall chitin and increases caspofungin susceptibility in neutrophil-deficient zebrafish. These findings suggest a protective role for ZfpA activity in resistance to the innate immune response and antifungal treatment during A. fumigatus infection.


Assuntos
Aspergilose , Aspergillus fumigatus , Animais , Humanos , Antifúngicos/farmacologia , Caspofungina/farmacologia , Neutrófilos , Peixe-Zebra/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fatores de Transcrição/metabolismo , Aspergilose/microbiologia , Regulação Fúngica da Expressão Gênica , Quitina
12.
Res Sq ; 2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37214903

RESUMO

While the exquisite sensitivity of neutrophils enables their rapid response to infection in vivo; this same sensitivity complicates the ex vivo study of neutrophils. Handling of neutrophils ex vivo is fraught with unwanted heterogeneity and alterations that can diminish the reproducibility of assays and limit what biological conclusions can be drawn. There is a need to better understand the influence of ex vivo procedures on neutrophil behavior to guide improved protocols for ex vivo neutrophil assessment to improve inter/intra-experimental variability. Here, we investigate how whole blood logistics (i.e., the procedure taken from whole blood collection to delivery of the samples to analytical labs and storage before neutrophil interrogation) affects neutrophil non-specific activation (i.e., baseline apoptosis and NETosis) and kinetics (i.e., activation over time). All the experiments (60+ whole blood neutrophil isolations across 36 blood donors) are performed by a single operator with optimized isolation and culture conditions, and automated image analysis, which together increase rigor and consistency. Our results reveal: i) Short-term storage (<8 h) of whole blood does not significantly affect neutrophil kinetics in subsequent two-dimensional (2D) cell culture; ii) Neutrophils from long-term storage (>24 h) in whole blood show significantly higher stability (i.e., less non-specific activation) compared to the control group with the isolated cells in 2D culture. iii) Neutrophils have greater non-specific activation and accelerated kinetic profiles when stored in whole blood beyond 48 h.

13.
Trends Immunol ; 44(5): 324-325, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37029072

RESUMO

How neutrophils make decisions about polarity and migration path in complex tissue environments in situ remains unclear. Hadjitheodorou et al. describe how an internal mechanical regulator might help cells resolve the dilemma of two competing cell fronts.


Assuntos
Neutrófilos , Humanos , Polaridade Celular , Movimento Celular
14.
bioRxiv ; 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36993176

RESUMO

Epithelial damage leads to early reactive oxygen species (ROS) signaling, which regulates sensory neuron regeneration and tissue repair. How the initial type of tissue injury influences early damage signaling and regenerative growth of sensory axons remains unclear. Previously we reported that thermal injury triggers distinct early tissue responses in larval zebrafish. Here, we found that thermal but not mechanical injury impairs sensory axon regeneration and function. Real-time imaging revealed an immediate tissue response to thermal injury characterized by the rapid Arp2/3-dependent migration of keratinocytes, which was associated with tissue-scale ROS production and sustained sensory axon damage. Osmotic regulation induced by isotonic treatment was sufficient to limit keratinocyte movement, spatially-restrict ROS production and rescue sensory function. These results suggest that early keratinocyte dynamics regulate the spatial and temporal pattern of long-term signaling in the wound microenvironment during tissue repair.

15.
Nat Commun ; 14(1): 1502, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36932076

RESUMO

Neutrophilic inflammation is a hallmark of many monogenic autoinflammatory diseases; pathomechanisms that regulate extravasation of damaging immune cells into surrounding tissues are poorly understood. Here we identified three unrelated boys with perinatal-onset of neutrophilic cutaneous small vessel vasculitis and systemic inflammation. Two patients developed liver fibrosis in their first year of life. Next-generation sequencing identified two de novo truncating variants in the Src-family tyrosine kinase, LYN, p.Y508*, p.Q507* and a de novo missense variant, p.Y508F, that result in constitutive activation of Lyn kinase. Functional studies revealed increased expression of ICAM-1 on induced patient-derived endothelial cells (iECs) and of ß2-integrins on patient neutrophils that increase neutrophil adhesion and vascular transendothelial migration (TEM). Treatment with TNF inhibition improved systemic inflammation; and liver fibrosis resolved on treatment with the Src kinase inhibitor dasatinib. Our findings reveal a critical role for Lyn kinase in modulating inflammatory signals, regulating microvascular permeability and neutrophil recruitment, and in promoting hepatic fibrosis.


Assuntos
Células Endoteliais , Vasculite , Quinases da Família src , Humanos , Dasatinibe , Células Endoteliais/metabolismo , Inflamação/metabolismo , Neutrófilos/metabolismo , Fosforilação , Quinases da Família src/genética , Quinases da Família src/metabolismo , Vasculite/genética
16.
Integr Biol (Camb) ; 152023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36781971

RESUMO

The lymphatic system plays an active role during infection, however the role of lymphatic-neutrophil interactions in host-defense responses is not well understood. During infection with pathogens such as Pseudomonas aeruginosa, Staphylococcus aureus and Yersinia pestis, neutrophils traffic from sites of infection through the lymphatic vasculature, to draining lymph nodes to interact with resident lymphocytes. This process is poorly understood, in part, due to the lack of in vitro models of the lymphatic system. Here we use a 3D microscale lymphatic vessel model to examine neutrophil-lymphatic cell interactions during host defense responses to pathogens. In previous work, we have shown that follistatin is secreted at high concentrations by lymphatic endothelial cells during inflammation. Follistatin inhibits activin A, a member of the TGF-ß superfamily, and, together, these molecules form a signaling pathway that plays a role in regulating both innate and adaptive immune responses. Although follistatin and activin A are constitutively produced in the pituitary, gonads and skin, their major source in the serum and their effects on neutrophils are poorly understood. Here we report a microfluidic model that includes both blood and lymphatic endothelial vessels, and neutrophils to investigate neutrophil-lymphatic trafficking during infection with P. aeruginosa. We found that lymphatic endothelial cells produce secreted factors that increase neutrophil migration toward P. aeruginosa, and are a significant source of both follistatin and activin A during Pseudomonas infection. We determined that follistatin produced by lymphatic endothelial cells inhibits activin A, resulting in increased neutrophil migration. These data suggest that the follistatin:activin A ratio influences neutrophil trafficking during infection with higher ratios increasing neutrophil migration.


Assuntos
Folistatina , Pseudomonas aeruginosa , Folistatina/metabolismo , Pseudomonas aeruginosa/metabolismo , Neutrófilos/metabolismo , Endotélio Linfático/metabolismo , Células Endoteliais/metabolismo
17.
bioRxiv ; 2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36778488

RESUMO

Single photon avalanche diode (SPAD) array sensors can increase the imaging speed for fluorescence lifetime imaging microscopy (FLIM) by transitioning from laser scanning to widefield geometries. While a SPAD camera in epi-fluorescence geometry enables widefield FLIM of fluorescently labeled samples, label-free imaging of single-cell autofluorescence is not feasible in an epi-fluorescence geometry because background fluorescence from out-of-focus features masks weak cell autofluorescence and biases lifetime measurements. Here, we address this problem by integrating the SPAD camera in a light sheet illumination geometry to achieve optical sectioning and limit out-of-focus contributions, enabling fast label-free FLIM of single-cell NAD(P)H autofluorescence. The feasibility of this NAD(P)H light sheet FLIM system was confirmed with time-course imaging of metabolic perturbations in pancreas cancer cells with 10 s integration times, and in vivo NAD(P)H light sheet FLIM was demonstrated with live neutrophil imaging in a zebrafish tail wound, also with 10 s integration times. Finally, the theoretical and practical imaging speeds for NAD(P)H FLIM were compared across laser scanning and light sheet geometries, indicating a 30X to 6X frame rate advantage for the light sheet compared to the laser scanning geometry. This light sheet system provides faster frame rates for 3D NAD(P)H FLIM for live cell imaging applications such as monitoring single cell metabolism and immune cell migration throughout an entire living organism.

18.
bioRxiv ; 2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36747761

RESUMO

Hyphal growth is essential for host colonization during Aspergillus infection. The transcription factor ZfpA regulates A. fumigatus hyphal development including branching, septation, and cell wall composition. However, how ZfpA affects fungal growth and susceptibility to host immunity during infection has not been investigated. Here, we use the larval zebrafish- Aspergillus infection model and primary human neutrophils to probe how ZfpA affects A. fumigatus pathogenesis and response to antifungal drugs in vivo . ZfpA deletion promotes fungal clearance and attenuates virulence in wild-type hosts and this virulence defect is abrogated in neutrophil-deficient zebrafish. ZfpA deletion also increases susceptibility to human neutrophils ex vivo while overexpression impairs fungal killing. Overexpression of ZfpA confers protection against the antifungal caspofungin by increasing chitin synthesis during hyphal development, while ZfpA deletion reduces cell wall chitin and increases caspofungin susceptibility in neutrophil-deficient zebrafish. These findings suggest a protective role for ZfpA activity in resistance to the innate immune response and antifungal treatment during A. fumigatus infection. Author Summary: Aspergillus fumigatus is a common environmental fungus that can infect immunocompromised people and cause a life-threatening disease called invasive aspergillosis. An important step during infection is the development of A. fumigatus filaments known as hyphae. A. fumigatus uses hyphae to acquire nutrients and invade host tissues, leading to tissue damage and disseminated infection. In this study we report that a regulator of gene transcription in A. fumigatus called ZfpA is important for hyphal growth during infection. We find that ZfpA activity protects the fungus from being killed by innate immune cells and decreases the efficacy of antifungal drugs during infection by regulating construction of the cell wall, an important protective layer for fungal pathogens. Our study introduces ZfpA as an important genetic regulator of stress tolerance during infection that protects A. fumigatus from the host immune response and antifungal drugs.

19.
bioRxiv ; 2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36711463

RESUMO

Homeostatic trafficking to lymph nodes allows T cells to efficiently survey the host for cognate antigen. Non-mammalian jawed vertebrates lack lymph nodes but maintain similarly diverse T cell pools. Here, we exploit in vivo imaging of transparent zebrafish to investigate how T cells organize and survey for antigen in an animal devoid of lymph nodes. We find that naïve-like T cells in zebrafish organize into a previously undescribed whole-body lymphoid network that supports streaming migration and coordinated trafficking through the host. This network has the cellular hallmarks of a mammalian lymph node, including naïve T cells and CCR7-ligand expressing non-hematopoietic cells, and facilitates rapid collective migration. During infection, T cells transition to a random walk that supports antigen presenting cell interactions and subsequent activation. Our results reveal that T cells can toggle between collective migration and individual random walks to prioritize either large-scale trafficking or antigen search in situ . This novel lymphoid network thus facilitates whole-body T cell trafficking and antigen surveillance in the absence of a lymph node system. Significance Statement: In mammals, lymph nodes play a critical role in the initiation of adaptive immune responses by providing a dedicated place for T cells to scan antigen-presenting cells. Birds, reptiles, amphibians, and fish all maintain diverse repertoires of T cells but lack lymph nodes, raising questions about how adaptive immunity functions in lower jawed vertebrates. Here, we describe a novel network of lymphocytes in zebrafish that supports whole-body T cell trafficking and provides a site for antigen search, mirroring the function of mammalian lymph nodes. Within this network, T cells can prioritize large-scale trafficking or antigen scanning by toggling between two distinct modes of migration. This network provides valuable insights into the evolution of adaptive immunity.

20.
J Immunol ; 209(10): 1960-1972, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36426951

RESUMO

Aspergillus fumigatus is an important opportunistic fungal pathogen and causes invasive pulmonary aspergillosis in conditions with compromised innate antifungal immunity, including chronic granulomatous disease, which results from inherited deficiency of the superoxide-generating leukocyte NADPH oxidase 2 (NOX2). Derivative oxidants have both antimicrobial and immunoregulatory activity and, in the context of A. fumigatus, contribute to both fungal killing and dampening inflammation induced by fungal cell walls. As the relative roles of macrophage versus neutrophil NOX2 in the host response to A. fumigatus are incompletely understood, we studied mice with conditional deletion of NOX2. When NOX2 was absent in alveolar macrophages as a result of LysM-Cre-mediated deletion, germination of inhaled A. fumigatus conidia was increased. Reducing NOX2 activity specifically in neutrophils via S100a8 (MRP8)-Cre also increased fungal burden, which was inversely proportional to the level of neutrophil NOX2 activity. Moreover, diminished NOX2 in neutrophils synergized with corticosteroid immunosuppression to impair lung clearance of A. fumigatus. Neutrophil-specific reduction in NOX2 activity also enhanced acute inflammation induced by inhaled sterile fungal cell walls. These results advance understanding into cell-specific roles of NOX2 in the host response to A. fumigatus. We show that alveolar macrophage NOX2 is a nonredundant effector that limits germination of inhaled A. fumigatus conidia. In contrast, reducing NOX2 activity only in neutrophils is sufficient to enhance inflammation to fungal cell walls as well as to promote invasive A. fumigatus. This may be relevant in clinical settings with acquired defects in NOX2 activity due to underlying conditions, which overlap risk factors for invasive aspergillosis.


Assuntos
Aspergillus fumigatus , Neutrófilos , Camundongos , Animais , NADPH Oxidase 2/genética , Macrófagos , Inflamação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA